Chemistry Letters 1996

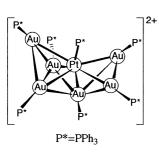
Structure and Catalysis of a SiO₂-Supported Gold-Platinum Cluster [(PPh₃)Pt(PPh₃Au)₆](NO₃)₂

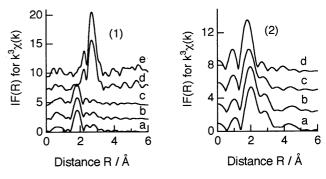
Youzhu Yuan, †,†† Kiyotaka Asakura,††† Huilin Wan,†† Khirui Tsai,†† and Yasuhiro Iwasawa*†
†Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113
††Department of Chemistry & State Key Laboratory for Physical Chemistry of the Solid Surface, Xiamen University, China
†††Research Center for Spectrochemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

(Received October 19, 1995)

A novel catalyst of $[(PPh_3)Pt(AuPPh_3)_6](NO_3)_2$ 1 supported on SiO_2 was very active in H_2 - D_2 equilibration with a TOF of 29.8 s⁻¹, while it showed low activity for ethene hydrogenation and CO oxidation at 303 K. It was found that the catalysis of $1/SiO_2$ was not caused by platinum particle impurity but by the platinum atom which bound to the gold atoms in the cluster. The cluster framework of $1/SiO_2$ was stable during the reactions at 303 K. The change of Au-Pt bond in $1/SiO_2$ by heat treatment and the catalytic performance of produced cluster fragments were characterized by EXAFS, FT-IR and kinetic investigation.

Gold has the filled d-band located far bellow the Fermi level and is believed to be least useful for catalytic purpose, though small Au particles on α-Fe₂O₃, Co₃O₄ and TiO₂ exhibit high catalytic activity for low-temperature oxidation of CO.1 There are some interesting examples, however, that evaporating gold onto platinum single-crystal surface displays markedly different activity and selectivity for conversion of n-hexene.^{2,3} Conceivably, the "alkali-metal-like" $d^{10}s^{I}$ electronic configuration of Au atom leads to relatively tractable electronic structure compared to clusters of transition-metals with open d shells, which will attract much attention in catalysis of the transitionmetal-gold clusters, especially ones containing catalytically important metals such as Pt and Pd. Those studies should provide a better understanding of metal-metal bonding and of the synergism often observed in bimetallic catalysis. Recently, Pignolet et al. reported a possible application of a phosphineligand stabilized Au cluster to heterogeneous catalysis by supporting on SiO₂ from surface organometallic viewpoints.⁴ Independently, we have successfully obtained a new catalyst by supporting [(PPh₃)Pt(AuPPh₃)₆](NO₃)₂ 1 on SiO₂. The aim of this study is to examine the catalytic property of a Pt atom embedded in Au ensemble. The catalysis of 1/SiO₂ for H₂-D₂ equilibration, ethene hydrogenation and CO oxidation has been investigated along with the surface structure characterization by means of FT-IR, EXAFS and TPR.




Figure 1. Framework of 1.

A dark-yellow microcrystalline of [(PPh₃)Pt(AuPPh₃)₆](NO₃)₂ 1 was synthesized according to the literature.⁵ The framework of 1 is shown in Figure 1. Impregnation of 1 on SiO₂ (Aerosil 300) was conducted with a carefully dried ethanol solution of 1 in atmosphere of Ar (99.9999%), followed by evaporation of the solvent under vacuum for 5 h at room temperature. The loading of 1 on

SiO₂ was controlled to be 0.5 Pt wt%. FT-IR studies on 1/SiO₂ showed that all frequencies attributed to PPh₃ ligands were

maintained in intensity when the sample was heated to 473 K at a rate of 4 K/min under vacuum, but the decrease in intensity was observed if temperature was over 473 K, especially above 520 K, indicating that a part of the ligands decompose to change the cluster framework when overheating.

EXAFS measurements have been carried out at room temperature to characterize 1/SiO₂. The Fourier transforms of EXAFS oscillations at Au L₃-edge and Pt L₃-edge for 1, 1/SiO₂, 1/SiO₂ treated at 473 K and 1/SiO₂ treated at 773 K under vacuum, are shown in Figure 2.

Figure 2. Fourier transforms of the EXAFS oscillations at Au L_3 -edge (1) and Pt L_3 -edge (2); (a): 1; (b): $1/SiO_2$; (c): $1/SiO_2$ treated at 473 K; (d): $1/SiO_2$ treated at 773 K; (e): Au foil.

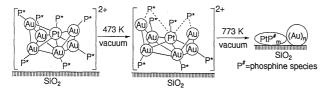

The EXAFS fitting results are listed in Table 1. The EXAFS analysis revealed that there was no change in the cluster framework of 1 after deposition on the SiO_2 surface. However, cluster fragmentation irreversibly occurred when $1/SiO_2$ was treated at 473 K under vacuum. The bond numbers of Pt-Au and Au-Au(Pt) decreased to about 68% and 75% of the original cluster 1, respectively. Moreover, the cluster framework of 1 was suggested to be completely destroyed to form gold particles and PtP* $_m$ (m \approx 3, P* $_m$ for phosphine species) when heated to 773 K.

Table 1. Curve-fitting results for the EXAFS data of 1/SiO₂^a

Sample	Au-P		Au-Au(Pt)		Pt-P		Pt-Au	
	N	R/Å	N	R/Å	N	R/Å	N	R/Å
1/SiO ₂		2.30			1.0			2.69
		±0.01	±1.0	± 0.02	±0.2	± 0.02	±1.0	±0.03
1/SiO ₂ b	0.6	2.28	3.0	2.83	1.3	2.27	4.1	2.69
	±0.1	± 0.02	±0.9	± 0.02	±0.3	± 0.02	±1.0	± 0.03
1/SiO2c	_		10	2.87	3.3	2.28		
			±1.0	± 0.02	±0.6	±0.02		
1 ^d	1.0	2.30	4.0	2.83	1.0	2.28	6.0	2.69

^a Fitting results were determined by comparing the EXAFS results with the crystallographic data of 1; ⁴ b treated at 473 K; ^c treated at 773 K. ^d cluster 1; Au-Au (Au foil): 2.88 Å.

130 Chemistry Letters 1996

Figure 3. Schematic framework transformation in $1/\text{SiO}_2$ by heating. Dotted lines tentatively represent bonding of P* to Pt and Au.

Change of the cluster framework in $1/\text{SiO}_2$ was proposed in Figure 3.

 H_2 - D_2 equilibration on a series of catalysts related to $1/SiO_2$ was tested at 303 K in a fixed-bed flow reactor system equipped with a mass spectrometer. Ar was used as a diluent gas with a flow rate of 50 ml/min (H_2 = D_2 =2.0 ml/min). The catalytic reaction rates are defined as turnover frequency (mol of HD)(mol of cluster)-1(s)-1, which are shown in Table 2.

From Table 2, it was observed that the catalytic activity of 1 under molecular solid-gas condition was promoted about 15 times by supporting on SiO₂.6 The dramatic increase may be mainly attributed to a high surface area of the support. It was also found that the catalytic activity of 1/SiO₂ was higher than that of the ones treated at 473 or 773 K. [Au₉(PPh₃)₈](NO₃)₂/SiO₂ was inactive for H2-D2 equilibration, which implies that the Pt atom in 1 plays a key role in activation of H₂. This is contrasted to activation of H2 on Pt catalysts which demands multimetal sites at Pt surface. Lower activity of 1/SiO₂ treated at 473 K compared to 1/SiO₂ is possibly referred to the increase in the number of Pt-P bonds and to the decrease in the number of Au-Pt bonds which may participate in the activation of H₂. The monometallic catalysts of Pt(PPh₃)₄/SiO₂ and that pretreated at 473 K were inactive (Table 2). In case of 1/SiO₂ treated at 773 K, the H₂-D₂ equilibration may be caused by Au particles⁷ or Pt sites with phosphine ligands. However, Pt(PPh₃)₄/SiO₂ treated at 773 K showed a remarkably high activity for H₂-D₂ equilibration, which may be ascribed to fragmentation of Pt(PPh₃)₄ to form metallic particles on SiO₂ because of irreversible H₂ adsorption (H/Pt=0.32). No chemisorption of H₂ was observed with Pt(PPh₃)₄/SiO₂ and the one treated at 473 K. Increasing activity

Table 2. H₂-D₂ equilibration (à), ethene hydrogenation (b) and CO oxidation (c) over several catalysts at 303 K

Catalyst		TOF/s-1	
	(a)	(b)	(c)
1	2.0	_	_
1/SiO ₂	29.8	$8x10^{-4}$	$7x10^{-5}$
1/SiO ₂ treated at 473 K	11.1	$5x10^{-4}$	$3x10^{-5}$
1/SiO ₂ treated at 773 K	25.7	$6x10^{-4}$	1.5x10 ⁻⁵
Pt(PPh ₃) ₄ /SiO ₂	0.0	0	
Pt(PPh ₃) ₄ /SiO ₂ treated at 473 K	0.0	0	
Pt(PPh ₃) ₄ /SiO ₂ treated at 773 K	1299.1	$7x10^{-2}$	_
[Au9(PPh3)8](NO3)2/SiO2	0.0		

by treatment of $1/SiO_2$ at 773 K might be due to partial clusterization of Pt though no Pt-Pt bond was observed by EXAFS.

From pulse reactions, the following results were obtained: 1) About 80% decrease in the rate of H2-D2 equilibration was observed when ethene was mixed into a gas flow of H₂-D₂. When ethene was mixed with D2, the HD formation rate was 1/20 of that in H2-D2 equilibration and a very weak signal in m/e 29 (C₂H₃D) was observed. It is, therefore, unlikely that H₂-D₂ equilibration on 1/SiO2 is caused by undetectable metallic platinum particle impurity. 2) No H2-D2 equilibration proceeded when CO pulse was admitted into a gas flow of H₂-D₂. By CO adsorption, the yellowish 1/SiO2 immediately turned to the orange-red one, which resembles the CO adduct of 1 in solution.⁴ It is also deducible that the H₂-D₂ equilibration takes place on the coordination space enough for hydrogen dissociation on the Pt atom of 1/SiO2. Pt(PPh3)4/SiO2 treated at 473 K was inactive, whereas, 1/SiO₂ treated at 473 K catalyzed H₂-D₂ equilibration. The Au-Pt bonds may contribute to the formation of active Pt

The rapid H_2 - D_2 equilibration catalyzed by $1/SiO_2$ impelled us to carry out the ethene hydrogenation at $C_2H_4/H_2=13:13$ kPa in a closed circulating system. It was found that the hydrogenation of ethene to ethane proceeded over $1/SiO_2$ at an initial rate of $8x10^{-4}$ s⁻¹ at 303 K (Table 2). TPR spectra of $1/SiO_2$ before and after ethene hydrogenation were almost the same each other, suggesting that no change occurred in the cluster framework of $1/SiO_2$ during the reaction.

We also performed CO oxidation reaction under CO/O₂=13:13 kPa at 303 K. The low reaction rate (TOF of $7x10^{-5}\,\mathrm{s}^{-1}$) in Table 2 is due to strong CO adsorption as proved by the color change, which prevents O₂ adsorbing. The catalytic reaction mechanism on one Pt atom embedded in the Au cluster is not clear at present, but behavior of $1/\mathrm{SiO}_2$ upon CO and O₂ adsorption related to structure characterized by FT-IR and EXAFS will be reported separately.⁸

References

- 1 M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon, *J. Catal.*, **144**, 174(1993).
- 2 J.W.A. Sachtler and G.A. Somorjai, J. Catal., 81, 77(1983).
- 3 J.W.A. Sachtler, J.P. Biberian, and G.A. Somorjai, *Surf. Sci.*, **110**, 43(1983).
- 4 I. V. Gubkina, L. I. Rubinstein, and L. H. Pignolet, *Abst. of ACS Meeting*, Vol 208, 405(1994).
- 5 L.N. Ito, J.D. Sweet, A.M. Mueting, L.H. Pignolet, M.F J. Schoondergang, and J.J. Steggerda, *Inorg. Chem.*, 28, 3696(1989).
- 6 M. A. Aubart, B. D. Chandler, R. A. T. Gould, D. A. Krogstad, M. J. Schoondergang, and L. H. Pignolet, *Iorg. Chem.*, **33**, 3724(1994).
- 7 S. Galvagno and G. Parravano, J. Catal., 55, 178(1978).
- 8 Y. Yuan, K. Asakura, H. Wan, K. Tsai, and Y. Iwasawa, to be published.